

DIRECTED EVOLUTION OF AAV9 PEPTIDE DISPLAY LIBRARIES IDENTIFIES A FAMILY OF CROSS-SPECIES VARIANTS WITH ENHANCED BRAIN TROPISM IN NON-HUMAN PRIMATES AND MICE FOLLOWING SYSTEMIC ADMINISTRATION

Tyler Moyer, Scientist II, Novel Capsid Discovery – Voyager Therapeutics ASGCT 2022- Novel AAV Capsids for the Brain, Eye, and Kidney May 19, 2022

The TRACER Platform - RNA Enrichment Analysis for Multiplexed Capsid Fitness

THERAPEUTICS

AAV9 'Hotspot' Library Reveals Favorable Positions Within the 3-fold Axis for High Library Viability

AAV9 Hotspot Library:

voyager

THERAPEUTICS

- Small-scale library with random <u>6mer</u> <u>peptide insertions</u> at each position with each VR. 153 total positions surveyed.
- Library was <u>barcoded</u> based on <u>insertion</u> <u>position</u>, not sequence identity.
- NGS was used to assess favorable positions for capsid production as well as transduction

4

AAV9 VR-IV Peptide Insertion Scan Library Design and Dosing Strategy

VCAP-101 and VCAP-102 Demonstrate Increased CNS Tropism in Both Macaques and Rodents

							60				
Cyno. Brain	Cyno. Sp. Crd.	Cyno. DRG	C57BI/6 Brain	BALB/c Brain		Change	50			•	VCAP-102
						IA Fold (1V9	40	•		•	
	=				Candidate mRNA	ain mRN vs wtA/	30 20	•••			VCAP-101
					AAV9:	57BI/6 Br	10	800			
				Ξ	-10 -1	wtAAV9	0	0 20 NHP (Cyno.) Brair vs w	40 (n mRNA Fo /tAAV9	60 80 old Change	
					-0.1	Network Cluste	ering	of Hits with FC/wt/	4AV9 > 10	<u>::</u>	
	_				0.01	VCAP-102				Fold Enrichm	Amino Acid nent Mutation Differen 1
						>					2 3
						-		\checkmark	VCAP-	101	4
										©	Voyager Therapeutics

V 🗿

THERAPEUTICS

6

VCAP-101 and VCAP-102 Demonstrate Increased CNS Tropism in Both Macaques and Rodents

Cyno. Brain	Cyno. Sp. Crd.	Cyno. DRG	C57Bl/6 Brain	BALB/c Brain
	_			
	-			
				_
				-

Cyno. Macaque C57BI/6 Mouse

Network Clustering of Hits with FC/wtAAV9 > 10:

Validation Efforts Confirm Increased CNS Tropism of VCAP-101 and VCAP-102 in Mice

Transgene: -ssCBA-Luc2-T2A-EGFP; 2.5E13 VG/kg

VCAP-101 and VCAP-102 Display a Unique Glial Tropism in Mouse Brain and Spinal Cord

VCAP-101 and VCAP-102 Display a Unique Glial Tropism in Mouse Brain and Spinal Cord

Co-stainings Suggest That VCAP-102 Transduces a Population of Olig2+ Glial Cells/

Single Cell RNA-seq Analysis Suggests that VCAP-102 Transduces Astrocytes and Cells of the Blood Brain Barrier in Mice

Fine-Tuning of VCAP-101 and VCAP-102 Generates Variants with Increased CNS Tropism Across Species

THERAPEUTICS

Acknowledgements

Capsid Discovery Team

- Mathieu Nonnenmacher
- Damien Maura
- · Matthew Child
- Roop Kaur
- Kristin Graham
- Brett Hoffman
- Tatiana Knox
- Jing Lin
- Amy Ren
- Gordon Ta
- Jiangyu Li
- Wei Wang
- Jiachen Liu

In vivo team

- Ambreen Sayed-Zahid
- Mike Grannan

<u>Histology</u>

- Katherine Tyson
- Anupriya Kulkarni
- Jessenia Laguna-Torres
- Nilesh Pande

Single Cell RNA-Seq

- Dan Laks
- Sam Hasson

Histology Outsourcing

Charlotte Chung

NHP Study Coordination

- Mike Hefferan
- Andrew Cameron

NGS Data Analysis

• Katie D'Aco – Diamond Age

Exciting Careers Found Here!

www.voyagertherapeutics.com/careers

Voyager THERAPEUTICS

QUESTIONS?

If you would like more information, please contact:

Tyler Moyer tmoyer@vygr.com