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INTRODUCTION
Adeno-associated viruses (AAV) are important vehicles for the 
delivery of gene therapies to target organs. Having control over 
their targeting is therefore of great therapeutic interest. Often, in 
the process of searching for AAV viruses with desirable tropisms, 
large libraries of mutant capsids are screened. The number of 
capsids screened in any one experiment, however, is typically far 
less than the sequence space being searched. Thus, it would be 
useful to restrict the search space at the outset to just those 
capsids that will produce viable virus. Here we present results 
from machine-learning models designed to aide in this process. 
They predict production-fitness from amino-acid sequence for 
AAV9 viruses carrying insertion mutations in the AAV capsid 
protein, VP1, in variable region 8. We demonstrate the 
performance of the models and show how they can be used as 
prescreening tools to build capsid libraries for tropism screening 
with high average production fitness and high diversity.

Figure 1. Peptide Insertions in AAV9 VR8

• ~100,000 random DNA sequences corresponding to 7 or 9 amino-acid 
peptides were cloned into a viral production plasmid.

• The resulting plasmid library of mutant capsids  was then transfected 
into HEK293 cells where AAV9 mutant viruses were packaged.

• Next generation sequencing (NGS) was then used to quantify the 
amount of DNA for each capsid before and after viral production.
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Figure 2. Next Generation Sequencing Counts 
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Figure 4. Histograms of Production Fitness for 7 and 9 Amino-Acid 
Insertions
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MACHINE LEARNING
Figure 5. Predicting Production Fitness

• We have developed machine-learning models as prescreening tools for the construction of AAV mutant capsid libraries 
that have a high proportion of capsids that produce virus well. 

• After screening several architectures, we found that transformer networks are effective at this task.

• Our regression models predict production fitness values —for both 7 and 9 amino-acid insertions in AAV9 VR8— with a 
correlation coefficient between measured and predicted values of 0.943 and rMSEs of 0.77 and 0.86.

• Our classification models can distinguish between low and high production fit capsids with accuracies of 0.92 and AUC 
ROC values of 0.98.

• To test these models further, we generated new mutant-capsid libraries and compared the production fitness values of 
these capsids with those predicted by the models. The predictions were found to be accurate.

• We are now using these models to prescreen capsids for inclusion in larger libraries to be tested with our TRACER 
system for brain tropism. 

AN EXPERIMENT TO TEST THE MODELS
• Capsid plasmid libraries were built that consisted of the following:

• 20,000 known high-production fit sequences.

• 60,000 ML-regression-model-predicted high-production fit sequences.

• 20,000 ML-regression-model-predicted low-production fit sequences.

• 3,000 sequences containing stop codons that should not produce well.

For both 7 and 9-amino-acid insertions:
• Sequences known to be high production fit were in fact so.
• Sequences predicted by ML to be high production fit were in fact so.
• Sequences predicted by ML to be low production fit were in fact so.
• Sequences carrying stop codons were low production fit as expected.
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• (A) Regression: A transformer with a single linear output node was used to predict production fitness 
from sequence, (left) 7 amino-acid insertions, (right) 9 amino-acid insertions. 

• (B) Classification: A transformer with a single binary output node was used to classify sequences into 
high or low production fit. High | Low threshold = -2.0. (left) 7 amino-acid insertions, (right) 9 amino-
acid insertions, 

CONCLUSIONS

Figure 6. Results of Model Testing

MACHINE LEARNING ARCHITECTURE
Figure 3. A Transformer for Production Fitness Prediction

• A Transformer encoder (left) was used for 
both regression and classification.

• Amino-acid seqs were one-hot encoded, 
passed through a positional embedding 
layer, and then passed through 4 
transformer encoder blocks. 

• Each encoder block had a multi-head dot-
product self attention layer with 4 heads. 

• A single node with either a linear 
(regression) or binary (classification) 
activation function was used to predict 
production fitness value or class.

• The training data consisted of ~ 64,000 
sequences.

• The testing data consisted of ~ 20,000 
sequences.

• Mean-squared error was used as the 
regression loss.

• Binary cross-entropy was used as the 
classification loss. 
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• NGS read counts for each plasmid and virus were converted to counts per million 
(cpm). Their ratio was taken, and the log2 of this ratio used as a measure of the quality 
of viral production and termed ‘Production fitness’.
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• The libraries were packaged into virus.

• Production fitness values were measured for each 
capsid via NGS sequencing before and after production.

• Distributions of these values were compared to model 
predictions.
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Sequence Plasmid Counts Virus Counts

0 ANWEIWY 131 72

1 CVYKWHM 91 4

2 INCYAEI 150 705

3 ECFYASI 167 27

4 QLFWIHK 79 165

… … … …

Sequence Virus/Plasmid Log2 virus.plasmid

0 ANWEIWY 0.303143 -1.721932

1 CVYKWHM 0.024244 -5.366229

2 INCYAEI 2.592289 1.374227

3 ECFYASI 0.089173 -3.487251

4 QLFWIHK 1.151974 0.204108

… … … …


