Machine-Learning for AAV9 Mutant-Capsid Screening for both **Production and ALPL-Mediated Transduction Efficiency**

Daniel H. Cox, Damien Maura, Weitong Chen, Mathieu Nonnenmacher

Voyager Therapeutics Inc., Lexington, MA, USA

INTRODUCTION

- We recently identified AAV9-capsid variants that show high CNS transduction in rodents and primates.
- They are relying on ALPL as their primary surface receptor for transport across the blood-brain barrier.
- We are also attempting to further engineer our vectors by removing major antigenic sites on the capsid surface. Here we have made mutations in a potentially antigenic region of the capsid.
- However, we have found that most mutations in this region render the capsid nonviable and many reduce its CNStransduction efficiency
- Furthermore, there is an inverse relationship between these properties, good producers are often bad transducers and vice versa.
- Thus, building a diverse mutant capsid library in this region that contains mutants that both produce well and maintain ALPL-mediated brain transduction — has been a challenge.
- To meet this challenge, we have taken a machine-learningbased approach. Specifically, we have used a combination of machine learning models to prescreen mutant-capsid sequences for both production fitness and ALPL-mediated transduction efficiency.
- We show that this approach has allowed us to effectively build the desired library and through it identify novel capsids with enhanced human intravenous immunoglobulin (IVIG) evading properties.

DATA FOR ML MODELING

- ~100,000 mutant AAV9 VP1 capsid sequences were generated synthetically, containing random mutations at 8 positions in region B.
- These mutants were constructed in an ALPL-binding parental sequence previously shown to transduce mouse and NHP brain well.
- The sequences were packaged into virus, and both plasmid and viral DNA sequences were quantified by next generation sequencing (NGS).
- Production fitness was calculated as log₂(viral cpm / plasmid cpm) for each VP1 mutant sequence.
- Viral particles were exposed to HEK293 cells expressing ALPL.
- Cell transduction was measured by NGS after capsid RNA isolation.
- **Transduction fitness** was calculated as log₂(cellular cpm / viral input cpm)

PRODUCTION FITNESS MODELING

- (A) Only 10% of mutant sequences are high production fit.
- (B) A RNN regressor can predict production fitness with a high correlation coefficient between predicted and measured values, Pearson r = 0.94.
- (C) Neural network architecture, (D) Loss vs. epoch during training.

PRODUCTION VS TRANSDUCTION

Figure 3. Production is Inversely Related to Transduction

voyager

- There is an inverse relationship between production fitness and ALPL-mediated transduction fitness among mutants.
- The area in red encloses capsids that are both production and transduction fit. It is mutant capsids like these that we would like too screen further for nAb evasion.

3 TRANSDUCTION FITNESS MODELING

An RNN for Transduction Fitness Classification

RNN Performance, ROC Curve, on Test Set

Accuracy = 0.94, Recall = 0.98 Precision = 0.94, F1 = 0.96

Predicted

Positive

0.28

0.98

- (A) ALPL-mediated transduction fitness histogram showing low and high transduction peaks.
- (B-D) A RNN Classifier that can predict high vs. low transduction fitness with an accuracy of 0.94 and a ROC-AUC of 0.98

5 An ML-BASED LIBRARY FOR nAb **EVASION SCREENING**

- 100,000 mutant sequences were selected for a new library to be screened for AAV9 neutralizing-antibody evasion.
- These mutants were made in an ALPL-binding parental sequence.
- Each sequence passed an in silico double screen of a larger pool of ~25 million randomly generated sequences containing 3, 4, 5, 6, 7 or 8 mutations.
- The large pool was screened for production fitness with the model shown in Figure 1, and for transduction fitness with the model shown in Figure 2.
- 3,000 stop-codon-containing sequences were also included as negative controls.
- To sample uniformly across the sequence space a minimum hamming distance constraint was applied.

6 RESULTS FROM THE ML-BASED LIBRARY

- We used the TRACER^{™1} system to quantify the ability of each mutant in the new ML-based library to transduce mouse brain in the absence or presence of human AAV9 neutralizing antibodies.
- Mice were injected with the new library at 2.5e13 VG/kg with either 0 or 60 mg human intravenous immunoglobulin (IVIG).
- After 14 days the mice were sacrificed, and NGS was used to quantify RNA expression in the brain from each mutant capsid. The results from six mice were averaged, and a CV filter of 1.0 was applied.

. Results from the ML-based Library Figure₄

Evasion vs Transduction, ML-based Library

B Transduction Fitness Mouse Brain, ML-based Library

- (A) Most sequences in the new ML-based library are production fit relative to the control stop-codon containing sequences.
- (B) Only a single high-transduction peak is observed in the transduction-fitness histogram of the ML-based library. The low transduction peak is largely absent
- (C) The sequences boxed in red indicate library capsids that have maintained their ALPL-mediated transduction capability (x-axis) but also demonstrate an ability to evade neutralizing antibodies relative to the parental capsid (y axis).
- Transduction fitness with 60 mg IVIG normalized to parental Evasion : Transduction fitness with 0 mg IVIG normalized to parental

CONCLUSIONS

- We have developed a machine-learning model that can make production-fitness predictions for AAV9 capsid variants mutated in a region where 90% of random mutants are nonviable. On our test dataset, measured and predicted values strongly correlate, Pearson r = 0.94.
- We have also developed a machine-learning model that can distinguish between high and low transducing mutants in a cell-based assay of ALPL-mediated viral transduction, accuracy = 0.94.
- We have used these models to prescreen mutants for inclusion in a library to be screened for AAV9 neutralizing antibody evasion.
- We show that this ML-based approach has allowed us to generate a diverse, largely-viable library in this difficult to mutate area.
- Further, it has allowed us to identify mutant capsids which display both enhanced ALPL-mediated brain transduction and AAV9-neutralizing-antibody evasion.

REFERENCES

1. Nonnenmacher, M., et al. (2021). "Rapid evolution of blood-brain-barrier-penetrating AAV capsids by RNA-driven biopanning." *Mol Ther Methods Clin Dev* **20**: 366-378.